12 resultados para Disease resistance

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vietnam is one of the countries with the highest prevalence and incidence of tuberculosis (TB) in the world (1). Although Vietnam has had many successes in TB control, it still faces the challenge of drug resistant and multidrug-resistant tuberculosis (MDR-TB). MDR-TB appears to be relatively stable, but data on MDR-TB continues to be scarce and routine testing of all isolates for drug susceptibility is not performed under Vietnam's National Tuberculosis Program (6). Pham Ngoc Thach Hospital (PNT), the leading tuberculosis and lung disease hospital in Ho Chi Minh City, serves as a reference hospital and laboratory for both Ho Chi Minh City and the Southern Vietnam region. This study is an unmatched, nested case-control study consisting of a secondary analysis of a previously created dataset composed of drug susceptibility and basic demographic data from a cohort of patients diagnosed with tuberculosis at PNT from 2003 through 2007 in order to calculate the prevalence of resistance among acid-fast bacilli smear-positive patients. The susceptibility records for the years 2003-2004 were not representative of the entire population, but over the years 2005-2007 the investigator found a decrease in resistance to all primary TB drugs on which records were available, as well as MDR-TB. Overall, females showed a higher proportion of resistance to TB drugs than males, and females had a greater likelihood of presenting with MDR-TB than males (OR=1.77). Persons 35-54 had greater likelihood of having MDR-TB than younger and older age groups. Among the population with HIV data, HIV-positivity was associated with greater likelihood of MDR-TB (OR=1.70, 95% CI=0.97-3.11). This study shows that rates of TB drug resistance are high, but declining, in one of Vietnam's largest TB hospitals, and that females and HIV-positive individuals are possible high-risk groups in this population.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that the emergence of drug-resistant pathogens is the result of the overuse and misuse of antibiotics. Infectious Disease Society of America, Center for Disease Control and World Health Organization continue to view, with concern, the lack of antibiotics in development, especially those against Gram-negative bacteria. Antimicrobial peptides (AMPs) have been proposed as an alternative to antibiotics due to their selective activity against microbes and minor ability to induce resistance. For example, the Food and Drug Administration approved Daptomycin (DAP) in 2003 for treatment of severe skin infections caused by susceptible Gram-positive organisms. Currently, there are 12 to 15 examples of modified natural and synthetic AMPs in clinical development. But most of these agents are against Gram-positive bacteria. Therefore, there is unmet medical need for antimicrobials used to treat infections caused by Gram-negative bacteria. In this study, we show that a pro-apoptotic peptide predominantly used in cancer therapy, (KLAKLAK)2, is an effective antimicrobial against Gram-negative laboratory strains and clinical isolates. Despite the therapeutic promise, AMPs development is hindered by their susceptibility to proteolysis. Here, we demonstrate that an all-D enantiomer of (KLAKLAK)2, resistant to proteolysis, retains its activity against Gram-negative pathogens. In addition, we have elucidated the specific site and mechanism of action of D(KLAKLAK)2 through a repertoire of whole-cell and membrane-model assays. Although it is considered that development of resistance does not represent an obstacle for AMPs clinical development, strains with decreased susceptibility to these compounds have been reported. Staphylococci resistance to DAP was observed soon after its approval for use and has been linked to alterations of the cell wall (CW) and cellular membrane (CM) properties. Immediately following staphylococcal resistance, Enterococci resistance to DAP was seen, yet the mechanism of resistance in enterococci remains unknown. Our findings demonstrate that, similar to S. aureus, development of DAP-resistance in a vancomycin-resistant E. faecalis isolate is associated with alterations of the CW and properties of the CM. However, the genes linked to these changes in enterococci appear to be different from those described in S. aureus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in diagnostic tools allows many breast cancers to be detected at an early pre-invasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. 14-3-3 is a family of highly conserved and ubiquitously expressed proteins that are expressed in all eukaryotic organisms. In mammals there are seven isoforms, which bind to phosphor-serine/threonine residues regulating essential cellular processes such as signal transduction, cell cycle progression, and apoptosis. Our laboratory has discovered that a particular 14-3-3 family member, Zeta, is overexpressed in over 40% of breast tumor tissues. Furthermore, I examined the stage of breast disease in which 14-3-3ζ overexpression occurs and found that increased expression of 14-3-3ζ begins at the stage of atypical ductal hyperplasia, a very early stage of breast disease that confers increased risk for progress toward breast cancer. To determine whether 14-3-3ζ overexpression is a decisive early event in breast cancer, I overexpressed 14-3-3ζ in MCF10A cells, a non-transformed mammary epithelial cell (MEC) line and examined its impact on acini formation in a three dimensional (3D) culture model which simulates a basic unit of structure in the mammary gland. I discovered that 14-3-3ζ overexpression severely disrupted the acini architecture resulting in the disruption of polarity and luminal filling. Both are critical morphological events in the pre-neoplastic breast disease. This thesis focuses on the molecular mechanism of luminal filling. Proper lumen formation is a result of anoikis, a specific type apoptosis of cells not attached to the basement membrane. I found that 14-3-3ζ overexpression conferred a resistance to anoikis. Additionally, 14-3-3ζ overexpression in MCF10A cells and in MECs from 14-3-3ζ transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3ζ induced hyperactivation of the PI3K/Akt pathway which led to phosphorylation and translocation of the MDM2 to the nucleus resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3ζ overexpressing MCF10A acini in 3D cultures. These data suggest that 14-3-3ζ overexpression is a critical event in early breast disease and down-regulation of p53 is one of the mechanisms by which 14-3-3ζ alters MEC acini structure and may increase the risk of progression to breast cancer. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, a bacillus known to cause disease in humans since ancient times, is the etiological agent of tuberculosis (TB). The infection is primarily pulmonary, although other organs may also be affected. The prevalence of pulmonary TB disease in the US is highest along the US-Mexico border, and of the four US states bordering Mexico, Texas had the second highest percentage of cases of TB disease among Mexico-born individuals in 1999 (CDC, 2001). Between the years of 1993 and 1998, the prevalence of drug-resistant (DR) TB was 9.1% among Mexican-born individuals and 4.4% among US-born individuals (CDC, 2001). In the same time period, the prevalence of multi-drug resistant (MDR) TB was 1.4% among Mexican-born individuals and 0.6% among US-born individuals (CDC, 2001). There is a renewed urgency in the quest for faster and more effective screening, diagnosis, and treatment methods for TB due to the resurgence of tuberculosis in the US during the mid-1980s and early 1990s (CDC, 2007a), and the emergence of drug-resistant, multidrug-resistant, and extremely drug-resistant tuberculosis worldwide. Failure to identify DR and MDR-TB quickly leads to poorer treatment outcomes (CDC, 2007b). The recent rise in TB/HIV comorbidity further complicates TB control efforts. The gold standard for identification of DR-TB requires mycobacterial growth in culture, a technique taking up to three weeks, during which time DR/MDR-TB individuals harboring resistant organisms may be receiving inappropriate treatment. The goal of this study was to determine the sensitivity and specificity of real-time quantitative polymerase chain reaction (qPCR) using molecular beacons in the Texas population. qPCR using molecular beacons is a novel approach to detect mycobacterial mutations conferring drug resistance. This technique is time-efficient and has been shown to have high sensitivity and specificity in several populations worldwide. Rifampin (RIF) susceptibility was chosen as the test parameter because strains of M. tuberculosis which are resistant to RIF are likely to also be MDR. Due to its status as a point of entry for many immigrants into the US, control efforts against TB and drug-resistant TB in Texas is a vital component of prevention efforts in the US as a whole. We show that qPCR using molecular beacons has high sensitivity and specificity when compared with culture (94% and 87%, respectively) and DNA sequencing (90% and 96%, respectively). We also used receiver operator curve analysis to calculate cutoff values for the objective determination of results obtained by qPCR using molecular beacons. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is the single greatest cause of death in the United States, accounting for nearly 2400 deaths each day. It is estimated that 79.4 million American adults have some form of the disease, and CVD mortality rates are greater than those of cancer, chronic lower respiratory diseases, accidents and diabetes mellitus combined. Psychosocial stress is a nontraditional risk factor for CVD, and can contribute to the clustering of traditional risk factors as well as to vascular manifestations of the disease. The Transcendental Meditation (TM) technique has been researched as a cost effective intervention aimed at decreasing psychosocial stress. This literature review attempts to analyze randomized controlled clinical trials of TM on cardiovascular disease outcomes. Eleven studies met inclusion criteria and are described below, with statistically significant positive outcomes observed in each study. Studies are grouped by primary outcome reported in the categories of cardiovascular function, blood pressure, and exercise tolerance. The TM intervention significantly decreased insulin resistance, heart rate variability, and carotid intima media thickness and improved exercise tolerance compared to control groups. Seven studies also reported significant decreases in blood pressure among hypertensive and normotensive subjects. Five studies focused solely on African American subjects, a population that has disproportionately higher rates of CVD and hypertension, and found significant improvements in CVD outcomes. Further research is recommended to establish the efficacy of TM on CVD outcomes. Future trials should include larger sample populations, wider ethnic distributions of subjects, and longer follow-up to ascertain the impact of this particular stress reduction technique on cardiovascular disease.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 200,000 African children are born with sickle-cell anemia each year. Research has shown that individuals with hemoglobin disorders, particularly sickle-cell anemia, have increased susceptibility to contracting malaria. Currently it is recommended that patients diagnosed with sickle-cell anemia undergo malaria chemoprophylaxis in order to decrease their chances of malarial infection. However, studies have shown that routine administration of these drugs increases the risk of drug resistance and could possibly impair the development of naturally acquired immunity. Clinical trials have shown intermittent preventive treatment (IPT) to be an effective method of protection against malaria. The objective of this report was to review previously conducted clinical trials that study the effects of intermittent preventive treatment on malaria and anemia in infants and children. Based on the review, implications for its appropriateness as a protective measure against malaria for infants and children diagnosed with sickle-cell disease were provided.^ The 18 studies reviewed were randomized controlled trials that focused on IPT’s effect on malaria (7 studies), anemia (1 study), or both (8 studies). In addition to these 16, one study looks at IPT’s effect on molecular resistance to malaria, and another study is a follow-up to a study in order to review IPT’s potential to cause a rebound effect. The 18 th study in this review specifically looks at IPT’s protective efficacy in children with SCA. The studies in this report were restricted to randomized controlled trials that have been performed from 2000 to 2010. Reports on anemia were included to illustrate possible added benefits of the use of IPT specific to burdens associated with SCA other than malaria susceptibility. The outcomes of these studies address several issues of concern involving the administration of IPT: protective efficacy (in reference to age, seasonal versus perennial malaria regions, and overall effectiveness against malaria and anemia), drug resistance, drug rebound effect, drug side-effects, and long-term effects. Overall, these showed that IPT has a significant level of protective efficacy against malaria and/or anemia in children. More specifically, the IPT study evaluating children diagnosed with sickle-cell anemia proved IPT to be a more effective method of protection than traditional chemoprophylaxis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontal diseases (PD) are infectious, inflammatory, and tissue destructive events which affect the periodontal ligament that surround and support the teeth. Periodontal diseases are the major cause of tooth loss after age 35, with gingivitis and periodontitis affecting 75% of the adult population. A select group of bacterial organisms are associated with periodontal pathogenesis. There is a direct association between oral hygiene and prevention of PD. The importance of genetic differences and host immune response capabilities in determining host, susceptibility or resistance to PD has not been established. This study examined the risk factors and serum (humoral) immune response to periodontal diseased-associated pathogens in a 55 to 80+ year old South Texas study sample with PD. This study sample was described by: age, sex, ethnicity, the socioeconomic factors marital status, income and occupation, IgG, IgA, IgM immunoglobulin status, and the autoimmune response markers rheumatoid factor (RF) and antinuclear antibody (ANA). These variables were used to determine the risk factors associated with development of PD. Serum IgG, IgA, IgM antibodies to bacterial antigens provided evidence for disease exposure.^ A causal model for PD was constructed from associations for risk factors (ethnicity, marital status, income, and occupation) with dental exam and periodontitis. The multiple correlation between PD and ethnicity, income and dental exam was significant. Hispanics of low income were least likely to have had a dental exam in the last year and most likely to have PD. The etiologic agents for PD, as evidenced by elevated humoral antibody responses, were the Gram negative microorganisms Bacteroides gingivalis, serotypes FDC381 and SUNYaBA7A1-28, and Wolinella recta. Recommendation for a PD prevention and control program are provided. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified. Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of platelets on cancer cell proliferation, apoptosis, and migration were examined. RNA interference was used to query signaling pathways mediating these effects. The necessity of platelet activation for in vitro effect was analyzed. In vivo orthotopic models were used to query the impact of thrombocytosis and thrombocytopenia on the efficacy of cytotoxic chemotherapy, the effect of aspirin on thrombocytosis and cancer, and platelet effect on anti-angiogenic therapy. Results: Platelets were found to increase at the time of diagnosis of ovarian cancer recurrence in a pattern comparable to CA-125. Platelet co-culture increased proliferation, increased migration, and decreased apoptosis in all cell lines tested. RNA interference implicated platelet derived growth factor alpha (PDGFRA) and transforming growth factor beta-receptor 1 (TGFBR1) signaling. Biodistribution studies suggested minimal platelet sequestration of taxanes. Blockade of platelet activation blocked in vitro effects. In vivo, thrombocytosis blocked chemotherapeutic efficacy, thrombocytopenia increased chemotherapeutic efficacy, and aspirin therapy partially blocked the effects of thrombocytosis. In vivo, withdrawal of anti-angiogenic therapy caused loss of therapeutic benefit with evidence of accelerated disease growth. This effect was blocked by use of a small-molecule inhibitor of Focal Adhesion Kinase. Anti-angiogenic therapy was also associated with increased platelet infiltration into tumor that was not seen to the same degree in the control or FAK-inhibitor-treated mice. Conclusions: Platelets are active participants in the growth and metastasis of tumor, both directly and via facilitation of angiogenesis. Blocking platelets, blocking platelet activation, and blocking platelet trafficking into tumor are novel therapeutic avenues supported by this data. Copyright © 2012 Justin Neal Bottsford-Miller, all rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the population of the world aging, the prominence of diseases such as Type II Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with T2D have an increased risk of developing AD compared to age-matched individuals, and the number of AD patients with T2D is higher than among aged-matched non-AD patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta cell (β-cell) death, and other complications. T2D and AD are considered protein misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of these proteins follows a seeding-nucleation model where misfolded soluble oligomers act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding occurs when oligomers composed by one protein seed the aggregation of a different protein. Our hypothesis is that the pathological interactions between T2D and AD may in part occur through cross-seeding of protein misfolding. To test this hypothesis, we examined how each respective aggregate (Aβ or IAPP) affects the disparate disease pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on T2D pathology, IAPP+/+/APPSwe+/- double transgenic (DTg) mice exhibited exacerbated T2D-like pathology as seen in elevated hyperglycemia compared to controls; in addition, IAPP levels in the pancreas are highest compared to controls. Moreover, IAPP+/+/APPSwe+/- animals demonstrate abundant plaque formation and greater plaque density in cortical and hippocampal areas in comparison to controls. Indeed, IAPP+/+/APPSwe+/- exhibit a colocalization of both misfolded proteins in cerebral plaques suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, and that these protein aggregates exacerbate and accelerate disease pathology, respectively. Further mechanistic studies are necessary to determine how these two proteins interact and aggravate both pancreatic and brain pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^